*2(x, *2(y, z)) -> *2(*2(x, y), z)
*2(x, x) -> x
↳ QTRS
↳ DependencyPairsProof
*2(x, *2(y, z)) -> *2(*2(x, y), z)
*2(x, x) -> x
*12(x, *2(y, z)) -> *12(x, y)
*12(x, *2(y, z)) -> *12(*2(x, y), z)
*2(x, *2(y, z)) -> *2(*2(x, y), z)
*2(x, x) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
*12(x, *2(y, z)) -> *12(x, y)
*12(x, *2(y, z)) -> *12(*2(x, y), z)
*2(x, *2(y, z)) -> *2(*2(x, y), z)
*2(x, x) -> x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, *2(y, z)) -> *12(x, y)
Used ordering: Polynomial interpretation [21]:
*12(x, *2(y, z)) -> *12(*2(x, y), z)
POL(*2(x1, x2)) = 1 + x1 + x2
POL(*12(x1, x2)) = x1 + x2
*2(x, x) -> x
*2(x, *2(y, z)) -> *2(*2(x, y), z)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*12(x, *2(y, z)) -> *12(*2(x, y), z)
*2(x, *2(y, z)) -> *2(*2(x, y), z)
*2(x, x) -> x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, *2(y, z)) -> *12(*2(x, y), z)
POL(*2(x1, x2)) = 3 + 3·x1 + 2·x2
POL(*12(x1, x2)) = 3·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
*2(x, *2(y, z)) -> *2(*2(x, y), z)
*2(x, x) -> x